Oxford Parallel library for Structured

mesh solvers
Release latest

Gihan Mudalige, Istvan Reguly, Mike Giles

May 16, 2024

CONTENTS:

Introduction 1
L1 OVerview oo e e e e e 1
1.2 Licencing« o o i o e e e e e e e e e e 1
1.3 Giting o o e e e e e e e 1
L4 Support e e e e e e e e e e e 2
1.5 Funding e e e e e e e 2
Getting Started 3
2.1 Dependencieso e e e e e e e e e e e e e e e e e e 3
2.2 0Obtaining OPS L . e e e e e 4
23 BuildOPS . . . e 5
Developing an OPS Application 7
3.1 OPS Abstraction o 7
3.2 Example Application e 7
3.3 Original - Initialisation L e 8
34 Original - Boundary loops e 8
3.5 Original - Mainiteration 0 i e e e e e e e e e e e e e 9
3.6 BuildOPS 9
3.7 Stepl-Preparingtouse OPS L 9
3.8 Step2-OPSdeclarations e 10
39 Step3-Firstparallel loop e 10
3.10 Step 4 - Indexes and global constants e e e e e 11
3.11 Step 5 - Complex stencils and reductions e 12
3.12 Step 6 - Handing itallto OPS e 13
3.13 Step7-Codegeneration e e e 13
3.14 Code generated VErSIONS ot it e e e e e e e e e e e e e e e 13
3.15 Optimizations - general e e e e 13
3.16 Optimizations - tiling e e e e e e e e 14
OPS API 15
41 OVEIVIEW oo i e e e e 15
42 Key Concepts and Structure o v v v vt e e e e e e e e e e e e e e e e 15
43 OPSCand C++ API e 17
44 Runtime Flagsand Options 35
45 DOXYZEN . . . i e e e e e e e e e e e 35
Examples 37
Performance Tuning 39
6.1 Executing with GPUDirect e e e e e e 39

6.2 Cache-blocking Tiling e
6.3 OpenMP and OpenMP+MPI e e
6.4 CUDA arguments vt vttt e e e e e e e e e e e e e e e e e e
6.5 OpenCLarguments ittt e e e
Developer Guide

7.1 Contributing L e e e e e e e e

8 Publications

9 Indices and tables

CHAPTER
ONE

INTRODUCTION

1.1 Overview

OPS (Oxford Parallel library for Structured mesh solvers) is a high-level embedded domain specific language (eDSL)
for writing multi-block structured mesh algorithms, and the corresponding software library and code translation tools
to enable automatic parallelisation on multi-core and many-core architectures. Multi-block structured meshes consists
of an unstructured collection of structured meshes. The OPS API is embedded in C/C++ and Fortran.

The current OPS eDSL supports generating code targeting multi-core/multi-threaded CPUs, many-core GPUs and
clusters of CPUs and GPUs using a range of paralleization models including SIMD vectorization, OpenMP, CUDA,
OpenCL, OpenACC and their combinations with MPI. There is also experimental support for paralleizations using
SYCL and AMD HIP. Various optimizations for each paralleization can be generated automatically, including cache
blocking tiling to improve locality. The OPS API and library can also be used to solve multi-dimensional tridiagonal
systems using the tridsolver library.

These pages provide detailed documentation on using OPS, including an installation guide, developing and running
OPS applications, the OPS API, developer documentation and performance tuning.

1.2 Licencing

OPS is released as an open-source project under the BSD 3-Clause License. See the LICENSE file for more information.

1.3 Citing

To cite OPS, please reference the following paper:

I. Z. Reguly, G. R. Mudalige and M. B. Giles, Loop Tiling in Large-Scale Stencil Codes at Run-Time with OPS,
in IEEE Transactions on Parallel and Distributed Systems, vol. 29, no. 4, pp. 873-886, 1 April 2018, doi:
10.1109/TPDS.2017.2778161.

@ARTICLE{Reguly_et_al_2018,
author={Reguly, Istvan Z. and Mudalige, Gihan R. and Giles, Michael B.},
journal={IEEE Transactions on Parallel and Distributed Systems},
title={Loop Tiling in Large-Scale Stencil Codes at Run-Time with OPS},
year={2018},
volume={29},
number={4},
pages={873-886},
doi={10.1109/TPDS.2017.2778161}}

https://github.com/OP-DSL/OPS
https://github.com/OP-DSL/tridsolver
https://github.com/OP-DSL/OPS/blob/master/LICENSE
https://ieeexplore.ieee.org/abstract/document/8121995
https://ieeexplore.ieee.org/abstract/document/8121995
https://ieeexplore.ieee.org/abstract/document/8121995

Oxford Parallel library for Structured mesh solvers, Release latest

Full list of publications from the OPS project can be found in the Publications section.

1.4 Support

The preferred method of reporting bugs and issues with OPS is to submit an issue via the repository’s issue tracker.
Users can also email the authors directly by contacting the OP-DSL team.

1.5 Funding

The development of OPS was in part supported by the UK Engineering and Physical Sciences Research Council (EP-
SRC) grants EP/K038494/1 (“Future-proof massively-parallel execution of multi-block applications™), EP/J010553/1
(“Software for Emerging Architectures - ASEArch”), The UK Turbulence Consortium grant EP/T026170/1, The Janos
Bolyai Research Scholarship of the Hungarian Academy of Sciences, the Royal Society through their Industry Fellow-
ship Scheme (INF/R1/180012), and the Thematic Research Cooperation Establishing Innovative Informatic and Info-
communication Solutions Project, which has been supported by the European Union and co-financed by the European
Social Fund under grant number EFOP-3.6.2-16-2017-00013. Research funding support was also provided by the UK
AWE under grants CDK0660 (“The Production of Predictive Models for Future Computing Requirements”), CDK0724
(“AWE Technical Outreach Programme”), AWE grant for “High-level Abstractions for Performance, Portability and
Continuity of Scientific Software on Future Computing Systems” and the Numerical Algorithms Group NAG.

Hardware resources for development and testing provided by the Oak Ridge Leadership Computing Facility at the
Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-000R22725, the ARCHER and ARCHER?2 UK National Supercomputing Service, University
of Oxford Advanced Research Computing (ARC) facility and through hardware donations and access provided by
NVIDIA and Intel.

2 Chapter 1. Introduction

https://ops-dsl.readthedocs.io/en/latest/pubs.html
https://op-dsl.github.io/about.html
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/K038494/1
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/J010553/1
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/T026170/1
https://www.nag.com/
http://www.archer.ac.uk
https://www.archer2.ac.uk/
http://dx.doi.org/10.5281/zenodo.22558
http://dx.doi.org/10.5281/zenodo.22558

CHAPTER
TWO

GETTING STARTED

Note: The current CMakefile and relevant instructions are mainly tested on linux-based systems including Win-
dows Subsystem for Linux

2.1 Dependencies

The following prerequisites and dependencies are required for building OPS. Building each of the backends are optional
and depends on the hardware and/or capabilities you will be targeting.

CMake

CMake 3.18 or newer is required for using the CMake building system. If the latest version is not installed/shipped by
default, it can be downloaded from https://cmake.org/download/, e.g., using the following script.

version=3.19.0

wget https://github.com/Kitware/CMake/releases/download/v$version/cmake-$version-Linux-
—x86_64.sh

Assume that CMake is going to be installed at /usr/local/cmake
cmake_dir=/usr/local/cmake

sudo is not necessary for directories in user space.

sudo mkdir $cmake_ dir

sudo sh ./cmake-$version-Linux-x86_64.sh --prefix=$cmake_dir --skip-license

sudo 1In -s $cmake_dir/bin/cmake /usr/local/bin/cmake

Python

The Python dependencies (primarily used for the OPS code generator) are best installed by setting up a virtual environ-
ment so that required packages can be installed without superuser privileges. To set up the Python virtual environment
and install the required dependant packages, ensure that you have Python3.9 or a more recent version with pip installed.
Detailed instructions for installing virtual environment using pip can be found here Execute following after cloning
the OPS repository (see below) to install required packages. Note OPS_INSTALL_PATH is the installation directory
of OPS/ops:

#Install virtual environment using pip (if not installed earlier)
#Please set the OPS_INSTALL_PATH variable before running following commands
python3 -m pip install --user virtualenv

mkdir -p $OPS_INSTALL_PATH/../ops_translator/ops_venv

python3 -m venv $OPS_INSTALL_PATH/../ops_translator/ops_venv
source $OPS_INSTALL_PATH/../ops_translator/ops_venv/bin/activate
python3 -m pip install --upgrade pip

(continues on next page)

https://packaging.python.org/en/latest/guides/installing-using-pip-and-virtual-environments/

Oxford Parallel library for Structured mesh solvers, Release latest

(continued from previous page)

python3 -m pip install -r $OPS_INSTALL_PATH/../ops_translator/requirements.txt
python3 -m pip install --force-reinstall libclang==16.0.6

These instructions can be executed by running the script OPS/ops_translator/setup_venv.sh file. After success-
fully setting up the Python virtual environment and installing the required dependent packages using the above instruc-
tions, you will need to activate the virtual environment by source $OPS_INSTALL_PATH/../ops_translator/
ops_venv/bin/activate every time you want to use the code generator. Activating the virtual environment ensures
that the code generator and its dependencies are isolated from the system-wide Python installation, avoiding conflicts
and ensuring proper execution.

HDFS

HDFS5 is required for parts of 10 functionalities. The CMake build system uses the parallel version by default even
for sequential codes, and automatically identify the library. If the automatic process fails, the path to the parallel HDF5
library can be specified by using -DHDF5_ROOT.

CUDA Backend

The CUDA backend targets NVIDIA GPUs with a compute capability of 3.0 or greater. The CMake build system will
detect the tookit automatically. If the automatic process fails, the build system will compile the library without the
CUDA support. Please use -DCUDA_TOOLKIT_ROOT_DIR to manually specify the path.

HIP Backend

The HIP backend targets AMD GPUs and NVIDIA GPUs which are supported by HIP - either through its CUDA
support or the ROCm stack (tested with >=3.9).

SYCL Backend

The SYCL backend is currently in development and only working without MPIL. It has been tested with Intel OneAPI
(>=2021.1), Intel’s public LLVM version, and hipSYCL (>=0.9.1), and runs on Intel CPUs and GPUs through Intel’s
OpenCL and Level Zero, NVIDIA and AMD GPUs both with the LLVM fork as well as hipSYCL. hipSYCL's OpenMP
support covers most CPU architectures too.

Tridiagonal Solver Backend

To use the tridiagonal solver OPS API in applications and build example applications such as adi, adi_burger and
adi_burger_3D the open source tridiagonal solver (scalar) library needs to be cloned and built from the Tridsolver
repository.

git clone https://github.com/OP-DSL/tridsolver.git

Details on building scalar tridiagonal solver library can be found in the README file located at the appropriate sub-
directory.

2.2 Obtaining OPS

The latest OPS source code can be obtained by cloning the OPS repository using

git clone https://github.com/OP-DSL/OPS.git

4 Chapter 2. Getting Started

https://www.hdfgroup.org/solutions/hdf5
https://developer.nvidia.com/cuda-downloads
https://rocmdocs.amd.com/en/latest/
https://www.khronos.org/sycl/
https://github.com/OP-DSL/tridsolver
https://github.com/OP-DSL/tridsolver
https://github.com/OP-DSL/tridsolver/blob/master/scalar/README
https://github.com/OP-DSL/OPS

Oxford Parallel library for Structured mesh solvers, Release latest

2.3 Build OPS

2.3.1 Using cmake
Build library and example applications together

Create a build directory, and run CMake (version 3.18 or newer)

mkdir build

cd build

Please see below for CMake options

cmake ${PATH_TO_OPS} -DBUILD_OPS_APPS=ON -DOPS_TEST=ON -DAPP_INSTALL_DIR=$HOME/OPS-APP -
—.DCMAKE_INSTALL_PREFIX=$HOME/OPS-INSTALL -DGPU_NUMBER=1

make # IEEE=1 enable IEEE flags in compiler

make install # sudo is needed if a directory like /usr/local/ is chosen.

After installation, the library and the python translator can be found at the direcory specified by
CMAKE_INSTALL_PREFIX, together with the executable files for applications at APP_INSTALL_DIR.

Build library and example applications separately

In this mode, the library can be firstly built and installed as

mkdir build

cd build
Please see below for CMake options
cmake ${PATH_TO_OPS -DCMAKE_INSTALL_PREFIX=$HOME/OPS-INSTALL

make # IEEE=1 enable IEEE flags in compiler
make install # sudo is needed if a system direction is chosen,

Then the application can be built as:

mkdir appbuild

cd appbuild

Please see below for CMake options

cmake ${PATH_TO_APPS} -DOPS_INSTALL_DIR=$HOME/OPS-INSTALL -DOPS_TEST=ON -DAPP_INSTALL_
—DIR=$HOME/OPS-APP -DGPU_NUMBER=1

make # IEEE=1 this option is important for applications to get accurate results

cmake options

* -DCMAKE_BUILD_TYPE=Release - enable optimizations
e -DBUILD_OPS_APPS=0N - build example applications (Library CMake only)
* -DOPS_TEST=0N - enable the tests

e -DCMAKE_INSTALL_PREFIX= - specify the installation direction for the library (/usr/local by default, Library
CMake only)

e -DAPP_INSTALL_DIR= - specify the installation direction for the applications ($HOME/OPS-APPS by default)
* -DGPU_NUMBER= - specify the number of GPUs used in the tests
* -DOPS_INSTALL_DIR= - specify where the OPS library is installed (Application CMake only, see here)

2.3. Build OPS 5

Oxford Parallel library for Structured mesh solvers, Release latest

* -DOPS_VERBOSE_WARNING=ON - show verbose output during building process

2.3.2 Using Makefiles

Set up environmental variables:

e OPS_COMPILER - compiler to be used (Currently supports Intel, PGI and Cray compilers, but others can be easily
incorporated by extending the Makefiles used in step 2 and 3)

e OPS_INSTALL_PATH - Installation directory of OPS/ops

e CUDA_INSTALL_PATH - Installation directory of CUDA, usually /usr/local/cuda (to build CUDA libs and
applications)

* OPENCL_INSTALL_PATH - Installation directory of OpenCL, usually /usr/local/cuda for NVIDIA OpenCL
implementation (to build OpenCL libs and applications)

e MPI_INSTALL_PATH - Installation directory of MPI (to build MPI based distributed memory libs and applica-
tions)

e HDF5_INSTALL_PATH - Installation directory of HDF5 (to support HDF5 based File 1/0O)

See example scripts (e.g. source_intel, source_pgi_15.10, source_cray) under OPS/ops/scripts that sets
up the environment for building with various compilers (Intel, PGI, Cray).

Build back-end library

For C/C++ back-end use Makefile under OPS/ops/c (modify Makefile if required). The libraries will be built in
OPS/ops/c/1ib

cd $OPS_INSTALL_PATH/c
make

For Fortran back-end use Makefile under OPS/ops/fortran (modify Makefile if required). The libraries will be built
in OPS/ops/fortran/lib

cd $OPS_INSTALL_PATH/fortran
make

Build exampe applications

For example to build CloverLeaf_ 3D under OPS/apps/c/CloverLeaf_ 3D

cd ../apps/c/Cloverleaf_3D/
make

6 Chapter 2. Getting Started

CHAPTER
THREE

DEVELOPING AN OPS APPLICATION

This page provides a tutorial in the basics of using OPS for multi-block structured mesh application development. This
is taken from a presentation given initially in April 2018 and subsequently updated for the latest release of OPS.

3.1 OPS Abstraction

OPS is a Domain Specific Language embedded in C/C++ and Fortran, targeting the development of multi-block struc-
tured mesh computations. The abstraction has two distinct components: the definition of the mesh, and operations over
the mesh.

¢ Defining a number of 1-3D blocks, and on them a number of datasets, which have specific extents in the different
dimensions.

* Describing a parallel loop over a given block, with a given iteration range, executing a given “kernel function”
at each mesh point, and describing what datasets are going to be accessed and how.

» Additionally, one needs to declare stencils (access patterns) that will be used in parallel loops to access datasets,
and any global constants (read-only global scope variables)

Data and computations expressed this way can be automatically managed and parallelised by the OPS library. Higher
dimensions are supported in the backend, but not currently by the code generators.

3.2 Example Application

In this tutorial we will use an example application, a simple 2D iterative Laplace equation solver.
* Go to the OPS/apps/c/laplace2dtutorial/original directory
* Open the laplace2d.cpp file
* Ituses an imax X jmax mesh, with an additional 1 layers of boundary cells on all sides
* There are a number of loops that set the boundary conditions along the four edges

* The bulk of the simulation is spent in a whilel oop, repeating a stencil kernel with a maximum reduction, and a
copy kernel

* Compile and run the code !

Note: The following tutorial details the step-by-step approach for using OPS for Laplace (C version) application de-
velopment. Similar step-by-step approach is also followed for the Laplace Fortran version and can be found at OPS/
apps/fortran/laplace2dtutorial.

https://op-dsl.github.io/docs/OPS/tutorial.pdf

Oxford Parallel library for Structured mesh solvers, Release latest

3.3 Original - Initialisation

The original code begins with initializing the data arrays used in the calculation:

//Size along y

int jmax = 4094;
//Size along x

int imax = 4094;
//Size along x

int iter_max = 100;

double pi = 2.0 * asin(1.0);

const double tol = 1.0e-6;

double error =1.0;

double *A;

double *Anew;

double *y0;

A = (double *)malloc((imax+2) * (jmax+2) * sizeof(double));
Anew = (double *)malloc((imax+2) * (jmax+2) * sizeof(double));
yo® = (double *)malloc((imax+2) * sizeof(double));

memset (A, 0, (imax+2) * (jmax+2) * sizeof(double));

3.4 Original - Boundary loops

The application sen sets boundary conditions:

for (int i = 0; i < imax+2; i++)
AT(O)*(imax+2)+i] = 0.0;

for (int i = 0; i < imax+2; i++)
A[(jmax+1)*(imax+2)+i] = 0.0;

for (int j = 0; j < jmax+2; j++) {
A[(G)*(imax+2)+0] = sin(pi * j / (Jmax+1));
}

for (int j = 0; j < imax+2; j++) {
Al(G)*(imax+2)+imax+1] = sin(pi * j / (jmax+1))*exp(-pi);
}

Note how in the latter two loops the loop index is used.

8 Chapter 3. Developing an OPS Application

Oxford Parallel library for Structured mesh solvers, Release latest

3.5 Original - Main iteration

The main iterative loop is a while loop iterating until the error tolarance is at a set level and the number of iterations
are les than the maximum set.

while (error > tol && iter < iter_max) {
error = 0.0;
for(int j = 1; j < jmax+1l; j++) {
for(int i = 1; 1 < imax+1; i++) {
Anew[(j)*(imax+2)+i] = 0.25f *
C AL *(Amax+2)+i+1] + A[L(F)*(Amax+2)+i-1]
+ A[(G-1D)*(imax+2)+i] + AL+ *(imax+2)+i]);
error = fmax(error, fabs(Anew[(j)*(imax+2)+i]-A[(j)*(imax+2)+i]));
}
}
for(int j = 1; j < jmax+1; j++) {
for(int i = 1; i < imax+1; i++) {
A[(J)*(Amax+2)+i] = Anew[(j)*(imax+2)+i];
}
}
if(iter % 10 == 0) printf(" , \n", iter, error);
iter++;

3.6 Build OPS

Build OPS using instructions in the Getting Started page.

3.7 Step 1 - Preparing to use OPS

Firstly, include the appropriate header files, then initialise OPS, and at the end finalise it.

* Define that this application is 2D, include the OPS header file, and create a header file where the outlined “ele-
mental kernels” will live.

#define OPS_2D
#include <ops_seq.h>
#include "laplace_kernels.h"

« Initialise and finalise OPS

int main(int argc, const char** argv) {

//Initialise the OPS library, passing runtime args, and setting diagnostics level to.
~low (1)

ops_init(argc, argv,1);

//Finalising the OPS library
ops_exit();

}

3.5. Original - Main iteration 9

https://ops-dsl.readthedocs.io/en/markdowndocdev/installation.html#getting-started

Oxford Parallel library for Structured mesh solvers, Release latest

By this point you need OPS set up - take a look at the Makefile in step1, and observe that the include and library paths
are added, and we link against ops_seq.

3.8 Step 2 - OPS declarations

Now declare a block and data on the block :

//The 2D block
ops_block block = ops_decl_block(2, "my_grid");

//The two datasets
int size[] = {imax, jmax};
int base[] = {0,0};
int d_m[] = {-1,-1};
int d_p[] = {1,1};
ops_dat d_A = ops_decl_dat(block, 1, size, base,
d_m, d_p, A, "double", "A™);
ops_dat d_Anew = ops_decl_dat(block, 1, size, base,
d_m, d_p, Anew, "double", "Anew");

Data sets have a size (number of mesh points in each dimension). There is passing for halos or boundaries in the
positive (d_p) and negative directions (d_m). Here we use a 1 thick boundary layer. Base index can be defined as it may
be different from O (e.g. in Fortran). Item these with a 0 base index and a 1 wide halo, these datasets can be indexed
from 1 tosize +1.

OPS supports gradual conversion of applications to its API, but in this case the described data sizes will need to match:
the allocated memory and its extents need to be correctly described to OPS. In this example we have two (imax+ 2)
(jmax+ 2) size arrays, and the total size in each dimension needs to matchsize [i] + d_p[i] d_m[i]. Thisisonly
supported for the sequential and OpenMP backends. If a NULL pointer is passed, OPS will allocate the data internally.

We also need to declare the stencils that will be used - in this example most loops use a simple 1-point stencil, and one
uses a 5-point stencil:

//Two stencils, a 1-point, and a 5-point

int s2d_00[] = {0,0};

ops_stencil S2D_00 = ops_decl_stencil(2,1,s2d_00,"0,0");
int s2d_5pt[] = {0,0, 1,0, -1,0, 0,1, 0,-1};

ops_stencil S2D_5pt = ops_decl_stencil(2,5,s2d_5pt,"5pt");

Different names may be used for stencils in your code, but we suggest using some convention.

3.9 Step 3 - First parallel loop

You can now convert the first loop to use OPS:

for (int i = 0; i < imax+2; 1i++)
AL(®)*(dmax+2)+1i] = 0.0;

This is a loop on the ottom boundary of the domain, which is at the 1 index for our dataset, therefore our iteration range
will be over the entire domain, including halos in the X direction, and the bottom boundary in the Y direction. The
iteration range is given as beginning (inclusive) and end (exclusive) indices in the x, y, etc. directions.

10 Chapter 3. Developing an OPS Application

Oxford Parallel library for Structured mesh solvers, Release latest

int bottom_range[] = {-1, imax+1, -1, 0};

Next, we need to outline the “elemental” into laplacekernels.h, and place the appropriate access objects -
ACC<double> &A, in the kernel’s formal parameter list, and (i, j) are the stencil offsets in the X and Y directions
respectively:

void set_zero(ACC<double> &A) {
AC0,0) = 0.0;
}

The OPS parallel loop can now be written as follows:

ops_par_loop(set_zero, "set_zero", block, 2, bottom_range,
ops_arg_dat(d_A, 1, S2D_00, "double", OPS_WRITE));

The loop will execute set_zero at each mesh point defined in the iteration range, and write the dataset d_A with the
1-point stencil. The ops_par_loop implies that the order in which mesh points will be executed will not affect the
end result (within machine precision).

There are three more loops which set values to zero, they can be trivially replaced with the code above, only altering
the iteration range. In the main while loop, the second simpler loop simply copies data from one array to another, this
time on the interior of the domain:

int interior_range[] = {0,imax,0, jmax};

ops_par_loop(copy, "copy", block, 2, interior_range,
ops_arg_dat(d_A, 1, S2D_00, "double", OPS_WRITE),
ops_arg_dat(d_Anew, 1, S2D_00, "double", OPS_READ));

And the corresponding outlined elemental kernel is as follows:

void copy(ACC<double> &A, const ACC<double> &Anew) {
AC0,0) = Anew(0,0);
}

3.10 Step 4 - Indexes and global constants

There are two sets of boundary loops which use the loop variable j - this is a common technique to initialise data, such
as coordinates (x = idx). OPS has a special argument ops_arg_idx which gives us a globally coherent (including
over MPI) iteration index - between the bounds supplied in the iteration range.

ops_par_loop(left_bndcon, "left_bndcon", block, 2, left_range,
ops_arg_dat(d_Anew, 1, S2D_00, "double", OPS_WRITE),
ops_arg_idx());

And the corresponding outlined user kernel is as follows. Observe the idx argument and the +1 offset due to the
difference in indexing:

void left_bndcon(ACC<double> &A, const int *idx) {
AC0,0) = sin(pi * (Adx[1]+1) / (max+1));
}

This kernel also uses two variables,jmax and pi that do not depend on the iteration index - they are iteration space
invariant. OPS has two ways of supporting this:

3.10. Step 4 - Indexes and global constants 11

Oxford Parallel library for Structured mesh solvers, Release latest

1. Global scope constants, through ops_decl_const, as done in this example: we need to move the declaration of
the imax,jmax and pi variables to global scope (outside of main), and call the OPS API:

//declare and define global constants
ops_decl_const("imax",1,"int",&imax);
ops_decl_const("jmax",1,"int",&jmax) ;
ops_decl_const("pi",1,"double",&pi);

These ariables do not need to be passed in to the elemental kernel, they are accessible in all elemental kernels.

1. The other option is to explicitly pass it to the elemental kernel with ops_arg_gbl: this is for scalars and small
arrays that should not be in global scope.

3.11 Step 5 - Complex stencils and reductions

There is only one loop left, which uses a 5 point stencil and a reduction. It can be outlined as usual, and for the stencil,
we will use S2Dpt5.

ops_par_loop(apply_stencil, "apply_stencil", block, 2, interior_range,
ops_arg_dat(d_A, 1, S2D_5pt, "double", OPS_READ),
ops_arg_dat(d_Anew, 1, S2D_00, "double", OPS_WRITE),
ops_arg_reduceCh_err, 1, "double", OPS_MAX))

And the corresponding outlined elemental kernel is as follows. Observe the stencil offsets used to access the adjacent
4 points:

void apply_stencil(const ACC<double> &A, ACC<double> &Anew, double *error) {
Anew(0,0) = 0.25f * (AC(1,0) + A(-1,0)
+ A(0,-1) + A(0,1));
“error = fmax(*error, fabs(Anew(0,0)-A(0,0)));
}

The loop also has a special argument for the reduction, ops_arg_reduce. As the first argument, it takes a reduction
handle, which has to be defined separately:

ops_reduction h_err = ops_decl_reduction_handle(sizeof(double), "double", "error");

Reductions may be increment (OPS_INC), min (OPS_MIN) or max (OPS_MAX). The user kernel will have to perform the
reduction operation, reducing the passed in value as well as the computed value.

The result of the reduction can be queried from the handle as follows:

ops_reduction_result(h_err, &error);

Multiple parallel loops may use the same handle, and their results will be combined, until the result is queried by the
user. Parallel loops that only have the reduction handle in common are semantically independent.

12 Chapter 3. Developing an OPS Application

Oxford Parallel library for Structured mesh solvers, Release latest

3.12 Step 6 - Handing it all to OPS

We have now successfully converted all computations on the mesh to OPS parallel loops. In order for OPS to manage
data and parallelisations better, we should let OPS allocate the datasets - instead of passing in the pointers to memory
allocated by us, we just pass in NULL (A and Anew). Parallel I/O can be done using HDFS5 - see the ops_hdf5.h header.

All data and parallelisation is now handed to OPS. We can now also compile the developer MPI version of the code -
see the Makefile, and try building laplace2d_mpi.

3.13 Step 7 - Code generation

Now that the developer versions of our code work, it’s time to generate code. On the console, type:

$OPSINSTALLPATH/. ./ops_translator/c/ops.py laplace2d.cpp

We have provided a Makefile which can use several different compilers (intel, cray, pgi, clang), we suggest modifying
it for your own applications. Try building CUDA, OpenMP, MPI+CUDA, MPI+OpenMP, and other versions of the
code. You can take a look at the generated kernels for different parallelisations under the appropriate subfolders.

If you add theOPS_DIAGS=2 runtime flag, at the end of execution, OPS will report timings and achieved bandwidth for
each of your kernels. For more options, see Runtime Flags and Options.

3.14 Code generated versions

OPS will generate and compile a large number of different versions.

e laplace2d_dev_seq and laplace2d_dev_mpi : these do not use code generation, they are intended for de-
velopment only

* laplace2d_seq and laplace2d_mpi : baseline sequential and MPI implementations

* laplace2d_openmp : baseline OpenMP implementation

e laplace2d_cuda, laplace2d_opencl, laplace2d_openacc : implementations targeting GPUs
e laplace2d_mpiinline : optimised implementation with MPI+OpenMP

* laplace2d_tiled: optimised implementation with OpenMP that improves spatial and temporal locality

3.15 Optimizations - general

Try the following performance tuning options

e laplace2d_cuda, laplace2d_opencl : you can set the OPS_BLOCK_SIZE_X and OPS_BLOCK_SIZE_Y run-
time arguments to control thread block or work group sizes

* laplace2d_mpi_cuda, laplace2d_mpi_openacc : add the -gpudirect runtime flag to enable GPU Direct
communications

3.12. Step 6 - Handing it all to OPS 13

https://ops-dsl.readthedocs.io/en/markdowndocdev/devanapp.html#runtime-flags-and-options

Oxford Parallel library for Structured mesh solvers, Release latest

3.16 Optimizations - tiling

Tiling uses lazy execution: as parallel loops follow one another, they are not executed, but put in a queue, and only
once some data needs to be returned to the user (e.g. result of a reduction) do these loops have to be executed.

With a chain of loops queued, OPS can analyse them together and come up with a tiled execution schedule.

This works over MPI as well: OPS extends the halo regions, and does one big halo exchange instead of several smaller
ones. In the current laplace2d code, every stencil application loop is also doing a reduction, therefore only two loops
are queued. Try modifying the code so the reduction only happens every 10 iterations ! On a Xeon E5-2650, one can
get a 2.5x speedup.

The following versions can be executed with the tiling optimzations.

e laplace2d_tiled, laplace2d_mpi_tiled : add the OPS_TILING runtime flag, and move -OPSDIAGS=3
to see the cache blocking tiling at work. For some applications, such as this one, the initial guess gives too
large tiles, try setting OPS_CACHE_SIZE to a lower value (in MB, for L3 size). Thread affinity control and us-
ing 1 process per socket isstrongly recommended. E.g. OMP_NUM_THREADS=20 numactl--cpunodebind=0
./laplace2dtiled -OPSDIAGS=3 OPS_TILING OPS_CACHE_SIZE=5. Over MPI, you will have to set
OPS_TILING_MAX_DEPTH to extend halo regions.

14 Chapter 3. Developing an OPS Application

CHAPTER
FOUR

OPS API

4.1 Overview

The key characteristic of structured mesh applications is the implicit connectivity between neighboring mesh elements
(such as vertices, cells). The main idea is that operations involve looping over a “rectangular” multi-dimensional set
of mesh points using one or more “stencils” to access data. In multi-block meshes, we have several structured blocks.
The connectivity between the faces of different blocks can be quite complex, and in particular they may not be oriented
in the same way, i.e.~an 7, j face of one block may correspond to the j, k face of another block. This is awkward and
hard to handle simply.

4.2 Key Concepts and Structure

The OPS API allows to declare a computation over such multi-block structured meshes. An OPS application can gen-
erally be declared in two key parts: (1) initialisation and (2) iteration over the mesh (carried out as a parallel loop).
During the initialisation phase, one or more blocks (we call these ops_blocks) are defined: these only have a dimen-
sionality (i.e. 1D, 2D, etc.), and serve to group datasets together. Datasets are defined on a block, and have a specific
size (in each dimension of the block), which may be slightly different across different datasets (e.g. staggered grids),
in some directions they may be degenerate (a size of 1), or they can represent data associated with different multigrid
levels (where their size if a multiple or a fraction of other datasets). Datasets can be declared with empty (NULL)
pointers, then OPS will allocate the appropriate amount of memory, may be passed non-NULL pointers (currently only
supported in non-MPI environments), in which case OPS will assume the memory is large enough for the data and
the block halo, and there are HDF5 dataset declaration routines which allow the distributed reading of datasets from
HDFS5 files. The concept of blocks is necessary to group datasets together, as in a multi-block problem, in a distributed
memory environment, OPS needs to be able to determine how to decompose the problem.

The initialisation phase usually also consists of defining the stencils to be used later on (though they can be defined
later as well), which describe the data access patterns used in parallel loops. Stencils are always relative to the “cur-
rent” point; e.g. if at iteration (7,), we wish to access (¢ — 1,7) and (¢, j), then the stencil will have two points:
{(-1,0),(0,0)}. To support degenerate datasets (where in one of the dimensions the dataset’s size is 1), as well as for
multigrid, there are special strided, restriction, and prolongation stencils: they differ from normal stencils in that as one
steps through a grid in a parallel loop, the stepping is done with a non-unit stride for these datasets. For example, in a
2D problem, if we have a degenerate dataset called xcoords, size (IV, 1), then we will need a stencil with stride (1, 0)
to access it in a regular 2D loop.

Finally, the initialisation phase may declare a number of global constants - these are variables in global scope that can
be accessed from within elemental kernels, without having to pass them in explicitly. These may be scalars or small
arrays, generally for values that do not change during execution, though they may be updated during execution with
repeated calls to ops_decl_const.

The initialisation phase is terminated by a call to ops_partition.

15

Oxford Parallel library for Structured mesh solvers, Release latest

The bulk of the application consists of parallel loops, implemented using calls to ops_par_loop. These constructs
work with datasets, passed through the opaque ops_dat handles declared during the initialisation phase. The iterations
of parallel loops are semantically independent, and it is the responsibility of the user to enforce this: the order in which
iterations are executed cannot affect the result (within the limits of floating point precision). Parallel loops are defined on
a block, with a prescribed iteration range that is always defined from the perspective of the dataset written/modified (the
sizes of datasets, particularly in multigrid situations, may be very different). Datasets are passed in using ops_arg_dat,
and during execution, values at the current grid point will be passed to the user kernel. These values are passed wrapped
in a templated ACC<> object (templated on the type of the data), whose parentheses operator is overloaded, which the
user must use to specify the relative offset to access the grid point’s neighbours (which accesses have to match the the
declared stencil). Datasets written may only be accessed with a one-point, zero-offset stencil (otherwise the parallel
semantics may be violated).

Other than datasets, one can pass in read-only scalars or small arrays that are iteration space invariant with
ops_arg_gbl (typically weights, Jt, etc. which may be different in different loops). The current iteration index
can also be passed in with ops_arg_idx, which will pass a globally consistent index to the user kernel (i.e. also under
MPI).

Reductions in loops are done using the ops_arg_reduce argument, which takes a reduction handle as an argument.
The result of the reduction can then be acquired using a separate call to ops_reduction_result. The semantics
are the following: a reduction handle after it was declared is in an “uninitialised” state. The first time it is used as
an argument to a loop, its type is determined (increment/min/max), and is initialised appropriately (0, co, —o0), and
subsequent uses of the handle in parallel loops are combined together, up until the point, where the result is acquired
using ops_reduction_result, which then sets it back to an uninitialised state. This also implies, that different
parallel loops, which all use the same reduction handle, but are otherwise independent, are independent and their
partial reduction results can be combined together associatively and commutatively.

OPS takes responsibility for all data, its movement and the execution of parallel loops. With different execution hard-
ware and optimisations, this means OPS will re-organise data as well as execution (potentially across different loops),
and therefore data accesses or manipulation should only be done through the OPS API. There is an external data
access API that allows access to the data stored by OPS which in turn allows interfacing with external libraries.

This restriction is exploited by a lazy execution mechanism in OPS. The idea is that OPS API calls that do not return a
result need not be executed immediately, rather queued, and once an API call requires returning some data, operations
in the queue are executed, and the result is returned. This allows OPS to analyse and optimise operations in the queue
together. This mechanism is fully automated by OPS, and is used with the various _tiled executables. For more
information on how to use this mechanism for improving CPU performance, see Section on Tiling. Some API calls
triggering the execution of queued operations include ops_reduction_result, and the functions in the data access
APL

To further clarify some of the important issues encountered when designing the OPS API, we note here some needs
connected with a 3D application:

¢ When looping over the interior with loop indices i, j, k, often there are 1D arrays which are referenced using just
one of the indices.

* To implement boundary conditions, we often loop over a 2D face, accessing both the 3D dataset and data from
a 2D dataset.

» To implement periodic boundary conditions using dummy ‘“halo” points, we sometimes have to copy one plane
of boundary data to another. e.g. if the first dimension has size I then we might copy the plane : = I — 2 to
plane 7 = 0, and plane ¢ = 1 to plane s = I — 1.

* In multigrid, we are working with two grids with one having twice as many points as the other in each direction.
To handle this we require a stencil with a non-unit stride.

* In multi-block grids, we have several structured blocks. The connectivity between the faces of different blocks
can be quite complex, and in particular they may not be oriented in the same way, i.e. an %, j face of one block
may correspond to the j, k face of another block.

16 Chapter 4. OPS API

Oxford Parallel library for Structured mesh solvers, Release latest

OPS handle all of these different requirements through stencil definitions.

4.3 OPS C and C++ API

Both C and C++ styles API are provided for utilizing the capabilities provided by the OPS library. They are essentially
the same although there are minor differences in syntax. The C++ API is mainly designed for data abstraction, which
therefore provides better data encapsulation and the support of multiple instances and threading (OpenMP currently).
In the following both C style routines and C++ class and methods will be introduced according to their functionality
with a notice (C) or (C++). If there is no such notice, the routine either applies to both or might not provided by the
C++ APL

To enable the C++ API, a compiler directive OPS_CPP_APT is required.
4.3.1 Initialisation and termination routines

C Style

ops_init

void ops_init(int argc, char** argy, int diags_level)

This routine must be called before all other OPS routines

Arguments | Description
argc, argv the usual command line arguments
diags_level | an integer which defines the level of debugging diagnostics and reporting to be performed

Currently, higher diags_levels does the following checks

diags_level = 1 : no diagnostics, default to achieve best runtime performance.

diags_level > 1 : print block decomposition and ops_par_loop timing breakdown.

diags_level > 4 : print intra-block halo buffer allocation feedback (for OPS internal development only)

diags_level > 5: checkif intra-block halo MPI sends depth match MPI receives depth (for OPS internal development
only)

ops_exit

void ops_exit()

This routine must be called last to cleanly terminate the OPS computation.

4.3. OPS C and C++ API 17

Oxford Parallel library for Structured mesh solvers, Release latest

C++ style

With the C++ style APIs, all data structures (block, data and stencils etc) are encapsulated into a class OPS_instance.
Thus, we can allocate multiple instances of OPS_instance by using the class constructor, for example,

// Allocate an instance
OPS_instance *instance = new OPS_instance(argc,argv,1l,ss);

where the meaning of arguments are same to the C API, while the extra argument (i.e., ss) is for accpeting the messages.

An explicit termination is not needed for the C++ API, although we need to “delete” the instance in if it is allocated
through pointer, i.e.,

delete instance;

4.3.2 Declaration routines
Block

ops_decl_block (C)

ops_block ops_decl_block(int dims, char *name)

This routine defines a structured grid block.

Arguments | Description
dims dimension of the block
name a name used for output diagnostics

OPS _instance::decl_block (C++)

A method of the OPS_instance class for declaring a block, which accepts same arguments with the C style function.
A OPS_instance object should be constructed before this. The method returns a pointer to a ops_block type variable,
where ops_block is an alias to a pointer type of ops_block_core. An example is

ops_block grid2D = instance->decl_block(2, "grid2D");

ops_decl_block_hdf5 (C)

ops_block ops_decl_block_hdf5(int dims, char *name, char *file)

This routine reads the details of a structured grid block from a named HDFS file

Arguments | Description

dims dimension of the block

name a name used for output diagnostics

file hdf5 file to read and obtain the block information from

Although this routine does not read in any extra information about the block from the named HDF?5 file than what is
already specified in the arguments, it is included here for error checking (e.g. check if blocks defined in an HDFS5 file
is matching with the declared arguments in an application) and completeness.

18 Chapter 4. OPS API

Oxford Parallel library for Structured mesh solvers, Release latest

Dat (ops_cat_core)

ops_decl_dat (C)

ops_dat ops_decl_dat(ops block block, int dim, int *size, int *base, int *dm, int *d p, T *data, char *type, char
*name)

This routine defines a dataset.

Arguments | Description

block structured block

dim dimension of dataset (number of items per grid element)

size size in each dimension of the block

base base indices in each dimension of the block

d_m padding from the face in the negative direction for each dimension (used for block halo)
d_p padding from the face in the positive direction for each dimension (used for block halo)
data input data of type T

type the name of type used for output diagnostics (e.g. double,float)

name a name used for output diagnostics

The size allows to declare different sized data arrays on a given block. d_mand d_p are depth of the “block halos” that
are used to indicate the offset from the edge of a block (in both the negative and positive directions of each dimension).

ops_block_core::decl_dat (C++)

The method ops_block_core::decl_dat is used to define a ops_dat object, which accepts almost same arguments with
the C conterpart where the block argument is not necessary, e.g.,

//declare ops_dat with dim = 2
ops_dat dat® = grid2D->decl_dat(2, size, base, d_m, d_p, temp, "double", "dat0");
ops_dat datl = grid2D->decl_dat(2, size, base, d_m, d_p, temp, "double", "datl");

where grid2D is a ops_block_core object which shall be defined before this.

ops_decl_dat_hdf5 (C)

ops_dat ops_decl_dat_hdfS(ops_block block, int dim, char *type, char *name, char *file)

This routine defines a dataset to be read in from a named hdf5 file

Arguments | Description

block structured block

dim dimension of dataset (number of items per grid element)

type the name of type used for output diagnostics (e.g. double,float)
name name of the dat used for output diagnostics

file hdfs file to read and obtain the data from

4.3. OPS C and C++ API 19

Oxford Parallel library for Structured mesh solvers, Release latest

Global constant

ops_decl_const (C)

void ops_decl_const(char const * name, int dim, char const * type, T * data)

This routine defines a global constant: a variable in global scope. Global constants need to be declared upfront so that
they can be correctly handled for different parallelization. For e.g CUDA on GPUs. Once defined they remain un-
changed throughout the program, unless changed by a call to ops_update_const(..). The name'' andtype” parameters
must be string literals since they are used in the code generation step

Arguments | Description

name a name used to identify the constant

dim dimension of dataset (number of items per element)

type the name of type used for output diagnostics (e.g. double, float)
data pointer to input data of type T’

OPS_instance::decl_const (C++)

The method accepts same arguments with its C counterpart.
Halo definition

ops_decl_halo (C)

ops_halo ops_decl_halo(ops_dat from, ops_dat to, int iter_size, int from_base, int *to_base, int *from_dir, int
*to_dir)

Arguments | Description

from origin dataset

to destination dataset

item_size defines an iteration size (number of indices to iterate over in each direction)
from_base indices of starting point in “from” dataset

to_base indices of starting point in “to” dataset

from_dir direction of incrementing for “from” for each dimension of iter_size
to_dir direction of incrementing for “to” for each dimension of iter_size

A from_dir [1,2] and a to_dir [2,1] means that x in the first block goes to y in the second block, and y in first block goes
to x in second block. A negative sign indicates that the axis is flipped. (Simple example: a transfer from (1:2,0:99,0:99)
to (-1:0,0:99,0:99) would use iter_size = [2,100,100], from_base = [1,0,0], to_base = [-1,0,0], from_dir = [0,1,2], to_dir
=[0,1,2]. In more complex case this allows for transfers between blocks with different orientations.)

20 Chapter 4. OPS API

Oxford Parallel library for Structured mesh solvers, Release latest

OPS _instance::decl_halo (C++)

The method accepts same arguments with its C counterpart.

ops_decl_halo_hdf5 (C)

ops_halo ops_decl_halo_hdf5(ops_dat from, ops_dat to, char* file)

This routine reads in a halo relationship between two datasets defined on two different blocks from a named HDFS file

Arguments | Description

from origin dataset

to destination dataset

file hdf5 file to read and obtain the data from

ops_decl_halo_group (C)

ops_halo_group ops_decl_halo_group(int nhalos, ops_halo *halos)

This routine defines a collection of halos. Semantically, when an exchange is triggered for all halos in a group, there is
no order defined in which they are carried out.

Arguments | Description
nhalos number of halos in halos
halos array of halos

OPS_instance::decl_halo_group (C++)

The method accepts same arguments with its C counterpart.
Reduction handle

ops_decl_reduction_handle (C)

ops_reduction ops_decl_reduction_handle(int size, char *type, char *name) This routine defines a reduction han-
dle to be used in a parallel loop

Arguments | Description

size size of data in bytes

type the name of type used for output diagnostics (e.g. double,float)
name name of the dat used for output diagnostics

__{void ops_reduction_result(ops_reduction handle, T *result) { This routine returns the reduced value held by a reduc-
tion handle. When OPS uses lazy execution, this will trigger the execution of all previously queued OPS operations. }

[handle| the ops_reduction handle | [result| a pointer to write the results to, memory size has to match the declared |

4.3. OPS C and C++ API 21

Oxford Parallel library for Structured mesh solvers, Release latest

OPS _instance::decl_reduction_handle (C++)

The method accepts same arguments with its C counterpart.

Partition

ops_partition (C)

ops_partition(char *method)

Triggers a multi-block partitioning across a distributed memory set of processes. (links to a dummy function for
single node parallelizations). This routine should only be called after all the ops_halo ops_decl_block and ops_halo
ops_decl_dat statements have been declared

Argu- Description
ments
method | string describing the partitioning method. Currently this string is not used internally, but is simply a
place-holder to indicate different partitioning methods in the future.

OPS_instance::partition (C++)

The method accepts same arguments with its C counterpart.

4.3.3 Diagnostic and output routines
ops_diagnostic_output (C)

void ops_diagnostic_output()

This routine prints out various useful bits of diagnostic info about sets, mappings and datasets. Usually used right after
an ops_partition() call to print out the details of the decomposition

OPS_instance::diagnostic_output (C++)

Same to the C counterpart.

ops_printf

void ops_printf(const char * format, ...)

This routine simply prints a variable number of arguments; it is created is in place of the standard C printf function
which would print the same on each MPI process

22 Chapter 4. OPS API

Oxford Parallel library for Structured mesh solvers, Release latest

ops_timers

void ops_timers(double *cpu, double *et) gettimeofday() based timer to start/end timing blocks of code

Arguments | Description
cpu variable to hold the CPU time at the time of invocation
et variable to hold the elapsed time at the time of invocation

ops_fetch_block_hdf5_file

void ops_fetch_block_hdf5_file(ops_block block, char *file)

Write the details of an ops_block to a named HDFS5 file. Can be used over MPI (puts the data in an ops_dat into an
HDFS5 file using MPI 1/O)

Arguments | Description
block ops_block to be written
file hdf5 file to write to

ops_fetch_stencil_hdf5_file

void ops_fetch_stencil_hdf5_file(ops_stencil stencil, char *file)

Write the details of an ops_block to a named HDFS file. Can be used over MPI (puts the data in an ops_dat into an
HDF5 file using MPI 1/0)

Arguments | Description
stencil ops_stencil to be written
file hdf5 file to write to

ops_fetch_dat_hdf5_file

void ops_fetch_dat_hdf5_file(ops_dat dat, const char *file)

Write the details of an ops_block to a named HDFS file. Can be used over MPI (puts the data in an ops_dat into an
HDF5 file using MPI 1/0)

Arguments | Description
dat ops_dat to be written
file hdf5 file to write to

4.3. OPS C and C++ API 23

Oxford Parallel library for Structured mesh solvers, Release latest

ops_print_dat_to_txtfile

void ops_print_dat_to_txtfile(ops_dat dat, chat *file) Write the details of an ops_block to a named text file. When
used under an MPI parallelization each MPI process will write its own data set separately to the text file. As such it
does not use MPI I/O. The data can be viewed using a simple text editor

ops_timing_output

Arguments | Description
dat ops_dat to to be written
file text file to write to

void ops_timing_output(FILE *os)

Print OPS performance performance details to output stream

Arguments | Description

0s output stream, use stdout to print to standard out

ops_NaNcheck

void ops_NaNcheck(ops_dat dat)

Check if any of the values held in the dat is a NaN. If a NaN is found, prints an error message and exits.

Arguments

Description

dat

ops_dat to to be checked

4.3.4 Halo exchange

ops_halo_transfer (C)

void ops_halo_transfer(ops_halo_group group)

This routine exchanges all halos in a halo group and will block execution of subsequent computations that depend on

the exchanged data.

Arguments | Description

group

the halo group

4.3.5 Parallel loop syntax

A parallel loop with N arguments has the following syntax:

24

Chapter 4. OPS API

Oxford Parallel library for Structured mesh solvers, Release latest

ops_par_loop

void ops_par_loop(void (*Kkernel)(...),char *name, ops_block block, int dims, int *range, ops_arg argl,ops_arg
arg2,..., ops_arg argN)

Arguments | Description

kernel user’s kernel function with N arguments

name name of kernel function, used for output diagnostics
block the ops_block over which this loop executes

dims dimension of loop iteration

range iteration range array

args arguments

The ps_arg arguments in ops_par_loop are provided by one of the following routines, one for global constants and
reductions, and the other for OPS datasets.

ops_arg_gbl

ops_arg ops_arg_gbl(T *data, int dim, char *type, ops_access acc)

Passes a scalar or small array that is invariant of the iteration space (not to be confused with ops_decl_const, which
facilitates global scope variables).

Arguments | Description

data data array

dim array dimension

type string representing the type of data held in data
acc access type

ops_arg_reduce

ops_arg ops_arg_reduce(ops_reduction handle, int dim, char *type, ops_access acc)

Passes a pointer to a variable that needs to be incremented (or swapped for min/max reduction) by the user kernel.

Arguments | Description

handle an ops_reduction handle

dim array dimension (according to type)

type string representing the type of data held in data
acc access type

ops_arg_dat

ops_arg ops_arg_dat(ops_dat dat, ops_stencil stencil, char *type,ops_access acc)

Passes a pointer wrapped in ac ACC<> object to the value(s) at the current grid point to the user kernel. The ACC
object’s parentheses operator has to be used for dereferencing the pointer.

4.3. OPS C and C++ API 25

Oxford Parallel library for Structured mesh solvers, Release latest

Arguments | Description

dat dataset

stencil stencil for accessing data

type string representing the type of data held in dataset
acc access type

ops_arg_idx

ops_arg ops_arg_idx()

Give you an array of integers (in the user kernel) that have the index of the current grid point, i.e. idx[0] is the index
in x, idx[1] is the index in y, etc. This is a globally consistent index, so even if the block is distributed across different
MPI partitions, it gives you the same indexes. Generally used to generate initial geometry.

4.3.6 Stencils

The final ingredient is the stencil specification, for which we have two versions: simple and strided.

ops_decl_stencil (C)

ops_stencil ops_decl_stencil(int dims,int points, int *stencil, char *name)

Arguments

Description

dims

dimension of loop iteration

points

number of points in the stencil

stencil

stencil for accessing data

name

string representing the name of the stencil

OPS_instance::decl_stencil (C++)

The method accepts same arguments with its C counterpart.

ops_decl_strided_stencil (C)

ops_stencil ops_decl_strided_stencil(int dims, int points, int *stencil, int *stride, char *name)

Arguments

Description

dims

dimension of loop iteration

points

number of points in the stencil

stencil

stencil for accessing data

stride

stride for accessing data

name

string representing the name of the stencil

26

Chapter 4. OPS API

Oxford Parallel library for Structured mesh solvers, Release latest

OPS _instance::decl_strided_stencil (C++)

The method accepts same arguments with its C counterpart.

ops_decl_stencil_hdf5

ops_stencil ops_decl_stencil_hdf5(int dims,int points, char name, char file)

Arguments | Description

dims dimension of loop iteration

points number of points in the stencil

name string representing the name of the stencil
file hdf5 file to write to

In the strided case, the semantics for the index of data to be accessed, for stencil pointp, in dimension m are defined as

stride[m] *loop_index[m] + stencil[p*dims+m]

where loop_index[m] is the iteration index (within the user-defined iteration space) in the different dimensions.

If, for one or more dimensions, both stride[m] and stencil[p*dims+m] are zero, then one of the following must
be true;

* the dataset being referenced has size 1 for these dimensions
* these dimensions are to be omitted and so the dataset has dimension equal to the number of remaining dimensions.

See OPS/apps/c/CloverLeaf/build_field.cop and OPS/apps/c/CloverLeaf/generate.cpp for an example
ops_decl_strided_stencil declaration and its use in a loop,respectively.

These two stencil definitions probably take care of all of the cases in the Introduction except for multiblock applications
with interfaces with different orientations — this will need a third, even more general, stencil specification. The strided
stencil will handle both multigrid (with a stride of 2 for example) and the boundary condition and reduced dimension
applications (with a stride of O for the relevant dimensions).

4.3.7 Checkpointing

OPS supports the automatic checkpointing of applications. Using the API below, the user specifies the file name
for the checkpoint and an average time interval between checkpoints, OPS will then automatically save all necessary
information periodically that is required to fast-forward to the last checkpoint if a crash occurred. Currently, when
re-launching after a crash, the same number of MPI processes have to be used. To enable checkpointing mode, the
OPS_CHECKPOINT runtime argument has to be used. (Do we also need to define the CHECKPOINTING compiler
directive?)

ops_checkpointing_init

bool ops_checkpointing_init(const char *filename, double interval, int options)

Initialises the checkpointing system, has to be called after ops_partition. Returns true if the application launches in
restore mode, false otherwise.

4.3. OPS C and C++ API 27

Oxford Parallel library for Structured mesh solvers, Release latest

Arguments | Description

filename name of the file for checkpointing. In MPI, this will automatically be post-fixed with the rank ID.
interval average time (seconds) between checkpoints

options a combinations of flags, listed in ops_checkpointing.h, also see below

* OPS_CHECKPOINT_INITPHASE - indicates that there are a number of parallel loops at the very beginning of
the simulations which should be excluded from any checkpoint; mainly because they initialise datasets that do
not change during the main body of the execution. During restore mode these loops are executed as usual. An
example would be the computation of the mesh geometry, which can be excluded from the checkpoint if it is re-
computed when recovering and restoring a checkpoint. The API call void ops_checkpointing_initphase_done()
indicates the end of this initial phase.

e OPS_CHECKPOINT_MANUAL_DATLIST - Indicates that the user manually controls the location of the check-
point, and explicitly specifies the list of ops_dats to be saved.

e OPS_CHECKPOINT_FASTFW - Indicates that the user manually controls the location of the checkpoint, and it
also enables fast-forwarding, by skipping the execution of the application (even though none of the parallel loops
would actually execute, there may be significant work outside of those) up to the checkpoint

¢ OPS_CHECKPOINT_MANUAL - Indicates that when the corresponding API function is called, the checkpoint
should be created. Assumes the presence of the above two options as well.

ops_checkpointing_manual_datlist

void ops_checkpointing_manual_datlist(int ndats, ops_dat *datlist)

A user can call this routine at a point in the code to mark the location of a checkpoint. At this point, the list of datasets
specified will be saved. The validity of what is saved is not checked by the checkpointing algorithm assuming that
the user knows what data sets to be saved for full recovery. This routine should be called frequently (compared to
check-pointing frequency) and it will trigger the creation of the checkpoint the first time it is called after the timeout
occurs.

Arguments | Description
ndats number of datasets to be saved
datlist arrays of ops_dat handles to be saved

ops_checkpointing_fastfw

bool ops_checkpointing_fastfw(int nbytes, char *payload)

A use can call this routine at a point in the code to mark the location of a checkpoint. At this point, the specified payload
(e.g. iteration count, simulation time, etc.) along with the necessary datasets, as determined by the checkpointing
algorithm will be saved. This routine should be called frequently (compared to checkpointing frequency), will trigger
the creation of the checkpoint the first time it is called after the timeout occurs. In restore mode, will restore all datasets
the first time it is called, and returns true indicating that the saved payload is returned in payload. Does not save
reduction data.

Arguments | Description
nbytes size of the payload in bytes
payload pointer to memory into which the payload is packed

28 Chapter 4. OPS API

Oxford Parallel library for Structured mesh solvers, Release latest

ops_checkpointing_manual_datlist_fastfw

bool ops_checkpointing_manual_datlist_fastfw(int ndats, op_dat *datlist, int nbytes, char *payload)

Combines the manual datlist and fastfw calls.

Arguments | Description

ndats number of datasets to be saved

datlist arrays of ops_dat handles to be saved

nbytes size of the payload in bytes

payload pointer to memory into which the payload is packed

ops_checkpointing_manual_datlist_fastfw_trigger

bool ops_checkpointing_manual_datlist_fastfw_trigger(int ndats, opa_dat *datlist, int nbytes, char *payload)

With this routine it is possible to manually trigger checkpointing, instead of relying on the timeout process. as such it
combines the manual datlist and fastfw calls, and triggers the creation of a checkpoint when called.

Arguments | Description

ndats number of datasets to be saved

datlist arrays of ops_dat handles to be saved

nbytes size of the payload in bytes

payload pointer to memory into which the payload is packed

The suggested use of these manual functions is of course when the optimal location for checkpointing is known - one
of the ways to determine that is to use the built-in algorithm. More details of this will be reported in a tech-report on
checkpointing, to be published later.

4.3.8 Access to OPS data

This section describes APIs that give the user access to internal data structures in OPS and return data to user-space.
These should be used cautiously and sparsely, as they can affect performance significantly

ops_dat_get_local_npartitions (C)

int ops_dat_get_local_npartitions(ops_dat dat)

This routine returns the number of chunks of the given dataset held by the current process.

Arguments | Description
dat the dataset

4.3. OPS C and C++ API 29

Oxford Parallel library for Structured mesh solvers, Release latest

ops_dat_core::get_local_npartitions (C++)

The C++ version of ops_dat_get_local_npartitions, which does not require input.

ops_dat_get_global_npartitions (C)

int ops_dat_get_global_npartitions(ops_dat dat)

This routine returns the number of chunks of the given dataset held by all processes.

Arguments | Description
dat the dataset

ops_dat_core::get_global_npartitions (C++)

The C++ version of ops_dat_get_global_npartitions, which does not require input.

ops_dat_get_extents (C)

void ops_dat_get_extents(ops_dat dat, int part, int *disp, int *sizes)

This routine returns the MPI displacement and size of a given chunk of the given dataset on the current process.

Arguments | Description

dat the dataset

part the chunk index (has to be 0)

disp an array populated with the displacement of the chunk within the ““global” distributed array
sizes an array populated with the spatial extents

ops_dat_core::get_extents (C++)

The C++ version of ops_dat_get_extents where the arguments are the same except no need of the ops_dat argu-
ments.

ops_dat_get_raw_metadata (C)

char* ops_dat_get_raw_metadata(ops_dat dat, int part, int *disp, int *size, int *stride, int *d_m, int *d_p)

This routine returns array shape metadata corresponding to the ops_dat. Any of the arguments that are not of interest,
may be NULL.

Arguments | Description

dat the dataset

part the chunk index (has to be 0)

disp an array populated with the displacement of the chunk within the *“global” distributed array

size an array populated with the spatial extents

stride an array populated strides in spatial dimensions needed for column-major indexing

d_m an array populated with padding on the left in each dimension. Note that these are negative values
d_p an array populated with padding on the right in each dimension

30 Chapter 4. OPS API

Oxford Parallel library for Structured mesh solvers, Release latest

ops_dat_core::get_raw_metadata (C++)

The C++ version of ops_dat_get_raw_metadata where the arguments are the same except no need of the ops_dat
arguments.

ops_dat_get_raw_pointer (C)

char* ops_dat_get_raw_pointer(ops_dat dat, int part, ops_stencil stencil, ops_memspace *memspace)

This routine returns a pointer to the internally stored data, with MPI halo regions automatically updated as required by
the supplied stencil. The strides required to index into the dataset are also given.

Argu- | Description

ments
dat the dataset
part the chunk index (has to be 0)

stencil | a stencil used to determine required MPI halo exchange depths
memspag¢ewhen set to OPS_HOST or OPS_DEVICE, returns a pointer to data in that memory space, otherwise
must be set to 0, and returns whether data is in the host or on the device

ops_dat_core::get_raw__pointer (C++)

The C++ version of ops_dat_get_raw_pointer where the arguments are the same except no need of the ops_dat
arguments.

ops_dat_release_raw_data (C)

void ops_dat_release_raw_data(ops_dat dat, int part, ops_access acc)

Indicates to OPS that a dataset previously accessed with ops_dat_get_raw_pointer is released by the user, and also tells
OPS how it was accessed.

A single call to ops_dat_release_raw_data() releases all pointers obtained by previous calls to
ops_dat_get_raw_pointer() calls on the same dat and with the same *memspace argument, i.e. calls do not
nest.

Argu- Description

ments

dat the dataset

part the chunk index (has to be 0)

acc the kind of access that was used by the user (OPS_READ if it was read only, OPS_WRITE if it was
overwritten, OPS_RW if it was read and written)

4.3. OPS C and C++ API 31

Oxford Parallel library for Structured mesh solvers, Release latest

ops_dat_core::_release_raw_data (C++)

The C++ version of ops_dat_release_raw_data where the arguments are the same except no need of the ops_dat
arguments.

ops_dat_fetch_data (C)

void ops_dat_fetch_data(ops_dat dat, int part, int *data)

This routine copies the data held by OPS to the user-specified memory location, which needs to be at least as large as
indicated by the sizes parameter of ops_dat_get_extents.

Arguments | Description

dat the dataset

part the chunk index (has to be 0)

data pointer to memory which should be filled by OPS

ops_dat_fetch_data_memspace (C)

void ops_dat_fetch_data_memspace(ops_dat dat, int part, char *data, ops_memspace memspace)

This routine copies the data held by OPS to the user-specified memory location, as which needs to be at least as large
as indicated by the sizes parameter of ops_dat_get_extents.

Arguments | Description

dat the dataset

part the chunk index (has to be 0)

data pointer to memory which should be filled by OPS
memspace the memory space where the data pointer is

ops_dat_core::fetch_data (C++)

The C++ version of ops_dat_fetch_data_memspace where the arguments the same except no need of the ops_dat
arguments.

ops_dat_set_data (C)

void ops_dat_set_data(ops_dat dat, int part, int *data)

This routine copies the data given by the user to the internal data structure used by OPS. User data needs to be laid out
in column-major order and strided as indicated by the sizes parameter of ops_dat_get_extents.

Arguments | Description

dat the dataset

part the chunk index (has to be 0)

data pointer to memory which should be copied to OPS

Chapter 4. OPS API

Oxford Parallel library for Structured mesh solvers, Release latest

ops_dat_set_data_memspace (C)

void ops_dat_set_data_memspace(ops_dat dat, int part, char *data, ops_memspace memspace)

This routine copies the data given by the user to the internal data structure used by OPS. User data needs to be laid out
in column-major order and strided as indicated by the sizes parameter of ops_dat_get_extents.

Arguments | Description

dat the dataset

part the chunk index (has to be 0)

data pointer to memory which should be copied to OPS
memspace the memory space where the data pointer is

ops_dat_core::set_data (C++)

The C++ version of ops_dat_set_data_memspace where the arguments the same except no need of the ops_dat
arguments.

4.3.9 Linear algebra solvers

Tridiagonal solver

This section specifies APIs that allow Tridsolver (a tridiagonal solver library) to be called from OPS. The library can
be used to solve a large number of tridiagonal systems of equations stored in multidimensional datasets. Parameters
that are passed to Tridsolver from OPS are stored in an ops_tridsolver_params object. The constructor for this
class takes the ops_block that the datasets are defined over as an argument and optionally also a solving strategy to
use (only relevant to MPI applications). The following solving strategies are available (see Tridsolver for more details
about these):

¢ GATHER_SCATTER (not available for GPUs)

ALLGATHER
« LATENCY_HIDING_TWO_STEP

« LATENCY_HIDING_INTERLEAVED
« JACOBI

« PCR (default)

Then parameters specific to different solving strategies can be set using setter methods. For applications using MPI, it is
beneficial to reuse ops_tridsolver_params objects between solves as much as possible due to set up times involved
with creating Tridsolver’s MPI communicators.

4.3. OPS C and C++ API 33

https://github.com/OP-DSL/tridsolver

Oxford Parallel library for Structured mesh solvers, Release latest

ops_tridMultiDimBatch

void ops_tridMultiDimBatch(int ndim, int solvedim, int* range, ops_dat a, ops_dat b, ops_dat c, ops_dat d,
ops_tridsolver_params *tridsolver_ctx)

This solves multiple tridiagonal systems of equations in multidimensional datasets along the specified dimension. The
matrix is stored in the a (bottom diagonal), b (central diagonal) and c (top diagonal) datasets. The right hand side is
stored in the d dataset and the result is also written to this dataset.

Arguments | Description

ndim the dimension of the datasets

solvedim the dimension to solve along

range the range to solve over, similar to ops_par_loop’s range argument, cannot exclude an entire MPI
process

a the dataset for the lower diagonal

b the dataset for the central diagonal

c the dataset for the upper diagonal

d the dataset for the right hand side, also where the solution is written to

trid- an object containing the parameters for the Tridsolver library

solver_ctx

ops_tridMultiDimBatch_Inc

void ops_tridMultiDimBatch(int ndim, int solvedim, int* range, ops_dat a, ops_dat b, ops_dat c, ops_dat d,
ops_dat u, ops_tridsolver_params *tridsolver_ctx)

This solves multiple tridiagonal systems of equations in multidimensional datasets along the specified dimension. The
matrix is stored in the a (bottom diagonal), b (central diagonal) and c (top diagonal) datasets. The right hand side is
stored in the d dataset and the result is added to the u dataset.

Arguments | Description

ndim the dimension of the datasets

solvedim the dimension to solve along

dims the range to solve over, similar to ops_par_loop’s range argument, cannot exclude an entire MPI
process

a the dataset for the lower diagonal

b the dataset for the central diagonal

c the dataset for the upper diagonal

d the dataset for the right hand side

u the dataset that the soluion is added to

trid- an object containing the parameters for the Tridsolver library

solver_ctx

34 Chapter 4. OPS API

Oxford Parallel library for Structured mesh solvers, Release latest

4.4

Runtime Flags and Options

The following is a list of all the runtime flags and options that can be used when executing OPS generated applications.

4.5

OPS_DIAGS=: set OPS diagnostics level at runtime.

OPS_DIAGS=1 - no diagnostics, default level to achieve the best runtime performance.

OPS_DIAGS>1 - print block decomposition and ops_par_loop timing breakdown.

OPS_DIAGS>4 - print intra-block halo buffer allocation feedback (for OPS internal development only).

OPS_DIAGS>5 - check if intra-block halo MPI sends depth match MPI receives depth (for OPS internal develop-
ment only).

OPS_BLOCK_SIZE_X=, OPS_BLOCK_SIZE_Y= and OPS_BLOCK_SIZE_Y=: The CUDA (and OpenCL) thread
block sizes in X, Y and Z dimensions. The sizes should be an integer between 1 - 1024, and currently they
should be selected such that OPS_BLOCK_SIZE_XOPS_BLOCK_SIZE_YOPS_BLOCK_SIZE_Z< 1024

-gpudirect : Enable GPU direct support when executing MPI+CUDA executables.

OPS_CL_DEVICE=: Select the OpenCL device for execution. Usually OPS_CL_DEVICE=0 selects the CPU and
OPS_CL_DEVICE=1 selects GPUs. The selected device will be reported by OPS during execution.

OPS_TILING : Execute OpenMP code with cache blocking tiling. See the Performance Tuning section.

OPS_TILING_MAXDEPTH=: Execute MPI+OpenMP code with cache blocking tiling and further communication
avoidance. See the Performance Tuning section.

Doxygen

Doxygen generated from OPS source can be found here.

4.4. Runtime Flags and Options 35

https://github.com/OP-DSL/OPS/blob/MarkdownDocDev/doc/perf.md
https://github.com/OP-DSL/OPS/blob/MarkdownDocDev/doc/perf.md
https://op-dsl-ci.gitlab.io/ops-ci/

Oxford Parallel library for Structured mesh solvers, Release latest

36 Chapter 4. OPS API

CHAPTER
FIVE

EXAMPLES

See OPS/apps/[c| fortran]/[application]/test.sh on compiling and running various parallel versions gen-
erated by OPS for each application. See the OPS-APPS repository to see the latest generated parallel code for each
application.

Further documentation under construction.

37

https://github.com/OP-DSL/OPS-APPS

Oxford Parallel library for Structured mesh solvers, Release latest

38 Chapter 5. Examples

CHAPTER
SIX

PERFORMANCE TUNING

6.1 Executing with GPUDirect

GPU direct support for MPI+CUDA, to enable (on the OPS side) add -gpudirect when running the executable. You may
also have to use certain environmental flags when using different MPI distributions. For an example of the required flags
and environmental settings on the Cambridge Wilkes2 GPU cluster see:https://docs.hpc.cam.ac.uk/hpc/user-guide/
performance-tips.html

6.2 Cache-blocking Tiling

OPS has a code generation (ops_gen_mpi_lazy) and build target for tiling. Once compiled, to enable, use the
OPS_TILING runtime parameter. This will look at the L3 cache size of your CPU and guess the correct tile size.
If you want to alter the amount of cache to be used for the guess, use the OPS_CACHE_SIZE=XX runtime parameter,
where the value is in Megabytes. To manually specify the tile sizes, use the OPS_TILESIZE_X, OPS_TILESIZE_Y, and
OPS_TILESIZE_Z runtime arguments.

When MPI is combined with OpenMP tiling can be extended to the MPI halos. Set OPS_TILING_MAXDEPTH to increase
the the halo depths so that halos for multiple ops_par_loops can be exchanged with a single MPI message (see
TPDS2017 for more details)To test, compile CloverLeaf under OPS/apps/c/CloverLeaf, modify clover.in to use a
61442 mesh, then run as follows:For OpenMP with tiling:

export OMP_NUM_THREADS=xx; numactl -physnodebind=0 ./cloverleaf_tiled OPS_TILING

For MPI+OpenMP with tiling:

export OMP_NUM_THREADS=xx; mpirun -np xx ./cloverleaf mpi_tiled OPS_TILING OPS_TILING_
—MAXDEPTH=6

To manually specify the tile sizes (in number of grid points), use the OPS_TILESIZE_X, OPS_TILESIZE_Y, and
OPS_TILESIZE_Z runtime arguments:

export OMP_NUM_THREADS=xx; numactl -physnodebind=0 ./cloverleaf_tiled OPS_TILING OPS_
TILESIZE_X=600 OPS_TILESIZE_Y=200

39

https://docs.hpc.cam.ac.uk/hpc/user-guide/performance-tips.html
https://docs.hpc.cam.ac.uk/hpc/user-guide/performance-tips.html
https://ieeexplore.ieee.org/abstract/document/8121995

Oxford Parallel library for Structured mesh solvers, Release latest

6.3 OpenMP and OpenMP+MPI

It is recommended that you assign one MPI rank per NUMA region when executing MPI+OpenMP parallel code.
Usually for a multi-CPU system a single CPU socket is a single NUMA region. Thus, for a 4 socket system, OPS’s
MPI+OpenMP code should be executed with 4 MPI processes with each MPI process having multiple OpenMP threads
(typically specified by the OMP_NUM_THREAD flag). Additionally on some systems using numactl to bind threads
to cores could give performance improvements (see OPS/scripts/numawrap for an example script that wraps the
numactl command to be used with common MPI distributions).

6.4 CUDA arguments

The CUDA (and OpenCL) thread block sizes can be controlled by setting the OPS_BLOCK_SIZE_X,
OPS_BLOCK_SIZE_Y and OPS_BLOCK_SIZE_Z runtime arguments. For example,

./cloverleaf_cuda OPS_BLOCK_SIZE_X=64 OPS_BLOCK_SIZE_ Y=4

6.5 OpenCL arguments

OPS_CL_DEVICE=XX runtime flag sets the OpenCL device to execute the code on.
Usually OPS_CL_DEVICE=0 selects the CPU and OPS_CL_DEVICE=1 selects GPUs.

40 Chapter 6. Performance Tuning

CHAPTER
SEVEN

DEVELOPER GUIDE

Under construction.

7.1 Contributing

To contribute to OPS please use the following steps :
1. Clone the OPS repository (on your local system).
2. Create a new branch in your cloned repository
3. Make changes / contributions in your new branch
4. Submit your changes by creating a Pull Request to the develop branch of the OPS repository

The contributions in the develop branch will be merged into the master branch as we create a new release.

41

https://github.com/OP-DSL/OPS

Oxford Parallel library for Structured mesh solvers, Release latest

42 Chapter 7. Developer Guide

CHAPTER
EIGHT

PUBLICATIONS

See OP-DSL publications page.

43

https://op-dsl.github.io/papers.html

Oxford Parallel library for Structured mesh solvers, Release latest

44 Chapter 8. Publications

CHAPTER
NINE

INDICES AND TABLES

* genindex
* modindex

¢ search

45

	Introduction
	Overview
	Licencing
	Citing
	Support
	Funding

	Getting Started
	Dependencies
	Obtaining OPS
	Build OPS
	Using cmake
	Build library and example applications together
	Build library and example applications separately
	cmake options

	Using Makefiles
	Set up environmental variables:
	Build back-end library
	Build exampe applications

	Developing an OPS Application
	OPS Abstraction
	Example Application
	Original - Initialisation
	Original - Boundary loops
	Original - Main iteration
	Build OPS
	Step 1 - Preparing to use OPS
	Step 2 - OPS declarations
	Step 3 - First parallel loop
	Step 4 - Indexes and global constants
	Step 5 - Complex stencils and reductions
	Step 6 - Handing it all to OPS
	Step 7 - Code generation
	Code generated versions
	Optimizations - general
	Optimizations - tiling

	OPS API
	Overview
	Key Concepts and Structure
	OPS C and C++ API
	Initialisation and termination routines
	C Style
	ops_init

	ops_exit
	C++ style

	Declaration routines
	Block
	ops_decl_block (C)
	OPS_instance::decl_block (C++)
	ops_decl_block_hdf5 (C)

	Dat (ops_cat_core)
	ops_decl_dat (C)
	ops_block_core::decl_dat (C++)
	ops_decl_dat_hdf5 (C)

	Global constant
	ops_decl_const (C)
	OPS_instance::decl_const (C++)

	Halo definition
	ops_decl_halo (C)
	OPS_instance::decl_halo (C++)
	ops_decl_halo_hdf5 (C)
	ops_decl_halo_group (C)
	OPS_instance::decl_halo_group (C++)

	Reduction handle
	ops_decl_reduction_handle (C)
	OPS_instance::decl_reduction_handle (C++)

	Partition
	ops_partition (C)
	OPS_instance::partition (C++)

	Diagnostic and output routines
	ops_diagnostic_output (C)
	OPS_instance::diagnostic_output (C++)
	ops_printf
	ops_timers
	ops_fetch_block_hdf5_file
	ops_fetch_stencil_hdf5_file
	ops_fetch_dat_hdf5_file
	ops_print_dat_to_txtfile
	ops_timing_output
	ops_NaNcheck

	Halo exchange
	ops_halo_transfer (C)

	Parallel loop syntax
	ops_par_loop
	ops_arg_gbl
	ops_arg_reduce
	ops_arg_dat
	ops_arg_idx

	Stencils
	ops_decl_stencil (C)
	OPS_instance::decl_stencil (C++)
	ops_decl_strided_stencil (C)
	OPS_instance::decl_strided_stencil (C++)
	ops_decl_stencil_hdf5

	Checkpointing
	ops_checkpointing_init
	ops_checkpointing_manual_datlist
	ops_checkpointing_fastfw
	ops_checkpointing_manual_datlist_fastfw
	ops_checkpointing_manual_datlist_fastfw_trigger

	Access to OPS data
	ops_dat_get_local_npartitions (C)
	ops_dat_core::get_local_npartitions (C++)
	ops_dat_get_global_npartitions (C)
	ops_dat_core::get_global_npartitions (C++)
	ops_dat_get_extents (C)
	ops_dat_core::get_extents (C++)
	ops_dat_get_raw_metadata (C)
	ops_dat_core::get_raw_metadata (C++)
	ops_dat_get_raw_pointer (C)
	ops_dat_core::get_raw__pointer (C++)
	ops_dat_release_raw_data (C)
	ops_dat_core::_release_raw_data (C++)
	ops_dat_fetch_data (C)
	ops_dat_fetch_data_memspace (C)
	ops_dat_core::fetch_data (C++)
	ops_dat_set_data (C)
	ops_dat_set_data_memspace (C)
	ops_dat_core::set_data (C++)

	Linear algebra solvers
	Tridiagonal solver
	ops_tridMultiDimBatch
	ops_tridMultiDimBatch_Inc

	Runtime Flags and Options
	Doxygen

	Examples
	Performance Tuning
	Executing with GPUDirect
	Cache-blocking Tiling
	OpenMP and OpenMP+MPI
	CUDA arguments
	OpenCL arguments

	Developer Guide
	Contributing

	Publications
	Indices and tables

